目录

菠萝🍍的博客

有谁不喜欢吃菠萝呢

标签: 推荐系统 (1)

【转载】浅谈矩阵分解在推荐系统中的应用

浅谈矩阵分解在推荐系统中的应用 原文地址:浅谈矩阵分解在推荐系统中的应用 为了方便介绍,假设推荐系统中有用户集合有6个用户,即U={u1,u2,u3,u4,u5,u6},项目(物品)集合有7个项目,即V={v1,v2,v3,v4,v5,v6,v7},用户对项目的评分结合为R,用户对项目的评分范围是[0, 5]。R具体表示如下: 推荐系统的目标就是预测出符号“?”对应位置的分值。推荐系统基于这样一个假设:用户对项目的打分越高,表明用户越喜欢。因此,预测出用户对未评分项目的评分后,根据分值大小排序,把分值高的项目推荐给用户。怎么预测这些评分呢,方法大体上可以分为基于内容的推荐、协同过滤推荐和混合推荐三类,协同过滤算法进一步划分又可分为基于基于 内存的推荐(memory-based)和基于 模型的推荐(model-based),本文介绍的矩阵分解算法属于基于模型的推荐。 矩阵分解算法的数学理论基础是矩阵的行列变换。在《线性代数》中,我们知道矩阵A进行行变换相当于A左乘一个矩阵,矩阵A进行列变换等价于矩阵A右乘一个矩阵,因此矩阵A可以表示为A=PEQ=PQ(E是标准阵)。 矩阵分解目标就是把....